Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry.

نویسندگان

  • Gorden Redlich
  • Ulrich M Zanger
  • Stephan Riedmaier
  • Nicolai Bache
  • Anders B M Giessing
  • Martin Eisenacher
  • Christian Stephan
  • Helmut E Meyer
  • Ole N Jensen
  • Katrin Marcus
چکیده

In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based on sequence homology. In the present work, we demonstrate the performance of a mass spectrometry-based strategy to simultaneously detect and differentiate distinct human Cytochrome P450 (CYP) isoforms including the highly similar CYP3A4, CYP3A5, CYP3A7, as well as CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP4F2, CYP4F3, CYP4F11, CYP4F12. Compared to commonly used immunodetection methods, mass spectrometry overcomes limitations such as low antibody specificity and offers high multiplexing possibilities. Furthermore, CYP phosphorylation, which may affect various biochemical and enzymatic properties of these enzymes, is still poorly analyzed, especially in human tissues. Using titanium dioxide resin combined with tandem mass spectrometry for phosphopeptide enrichment and sequencing, we discovered eight human P450 phosphorylation sites, seven of which were novel. The data from surgical human liver samples establish that the isoforms CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C8, CYP2D6, CYP3A4, CYP3A7, and CYP8B1 are phosphorylated in vivo. These results will aid in further investigation of the functional significance of protein phosphorylation for this important group of enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes.

AIMS Cannabidiol (CBD), one of the major constituents in marijuana, has been shown to be extensively metabolized by experimental animals and humans. However, human hepatic enzymes responsible for the CBD metabolism remain to be elucidated. In this study, we examined in vitro metabolism of CBD with human liver microsomes (HLMs) to clarify cytochrome P450 (CYP) isoforms involved in the CBD oxidat...

متن کامل

High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions.

Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interact...

متن کامل

Identification of metabolic pathways and enzyme systems involved in the in vitro human hepatic metabolism of dronedarone, a potent new oral antiarrhythmic drug

The in vitro metabolism of dronedarone and its major metabolites has been studied in human liver microsomes and cryopreserved hepatocytes in primary culture through the use of specific or total cytochrome P450 (CYP) and monoamine oxidase (MAO) inhibitors. The identification of the main metabolites and enzymes participating in their metabolism was also elucidated by using rhCYP, rhMAO, flavin mo...

متن کامل

Characterization of metabolites and cytochrome P450 isoforms involved in the microsomal metabolism of aconitine.

Aconitine, a major Aconitum alkaloid, is well known for its high toxicity that induces severe arrhythmias leading to death. The current study investigated the metabolism of aconitine and the effects of selective cytochrome P450 (CYP) inhibitors on the metabolism of aconitine in rat liver microsomes. The metabolites were separated and assayed by liquid chromatography-ion trap mass spectrometry (...

متن کامل

In vitro metabolism study of buprenorphine: evidence for new metabolic pathways.

Buprenorphine (BUP) is a synthetic derivative of the morphine alkaloid thebaine. BUP is metabolized by N-dealkylation to form the active metabolite nor-buprenorphine (Nor-BUP), and both undergo subsequent glucuronidation. Although BUP has been used clinically for years, its metabolism has still not been fully elucidated. The aim of this study was to clarify the identity of the human hepatic cyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of proteome research

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2008